

Universidade do Minho

IBB-CEB – INSTITUTE FOR BIOTECHNOLOGY AND BIOENGINEERING – CENTRE OF BIOLOGICAL ENGINEERING CCTC– COMPUTER SCIENCE AND TECHNOLOGY CENTER SCHOOL OF ENGINEERING UNIVERSITY OF MINHO

OPTFLUX 2 BEGINNER'S TUTORIAL

BEGINNER'S TUTORIAL

FOR

METABOLIC ENGINEERING WORKBENCH

Universidade do Minho

IBB-CEB – INSTITUTE FOR BIOTECHNOLOGY AND BIOENGINEERING – CENTRE OF BIOLOGICAL ENGINEERING CCTC– COMPUTER SCIENCE AND TECHNOLOGY CENTER SCHOOL OF ENGINEERING UNIVERSITY OF MINHO

> © *IBB-CEB/CCTC* All rights reserved.

LICENSES

• For this tutorial:

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-sa/3.0</u> or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

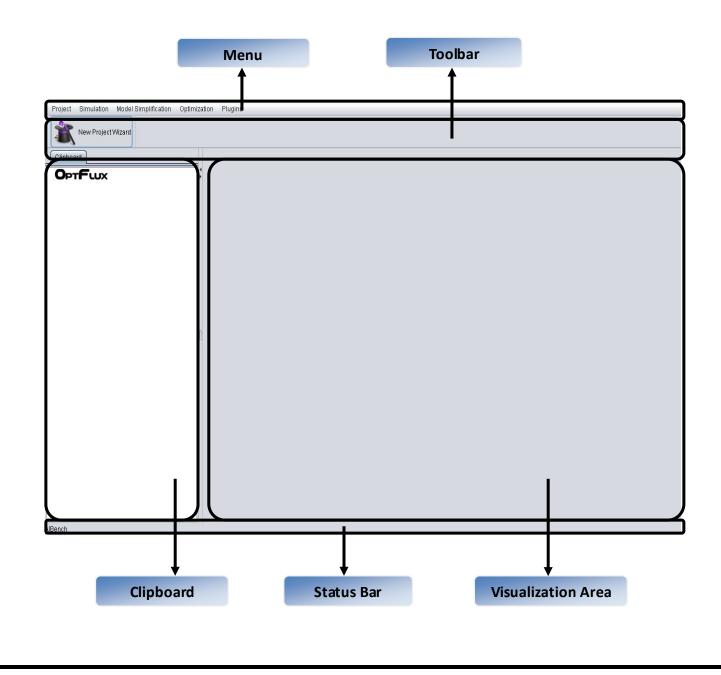
• For the OptFlux software:

Copyright 2009 IBB-CEB - Institute for Biotechnology and Bioengineering - Centre of Biological Engineering CCTC - Computer Science and Technology Center University of Minho

This is free software: you can redistribute it and/or modify it under the terms of the GNU Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Public License for more details.

You should receive a copy of the GNU Public License along with the code. If not, see http://www.gnu.org/licenses/


Created inside the SysBio Research Group (http://sysbio.di.uminho.pt)

FIRST THINGS FIRST!

Hello and welcome to the OptFlux 2 beginner's tutorial. If you haven't already downloaded the software please do it here: <u>www.OptFlux.org</u>.

After launching the software you'll be presented with the layout depicted in the image below. Most of OptFlux main features and operations will be accessible to you either through the **Menu** or the **Toolbar**. You can also have access to them by right-clicking in the **Clipboard** area. Your data types i.e., the project, metabolic models, simulation/optimization results, etc., will always be placed in the **Clipboard** area. The **Visualization Area** is the place where you can examine those data types in greater detail. Click around to get familiar with it and after that jump to the next step.

1ST **STEP – CREATING A NEW PROJECT**

To follow the steps in this tutorial you need to download the file <u>gomGG.zip</u>, available in <u>www.OptFlux.org/tutorial/gomGG.zip</u>. The model therein contained is a simplified model for growth of Saccharomyces cerevisiae [Forster, J. and Gombert, A.K. and Nielsen, N. *A functional genomics approach using metabolomics and in silico pathway analysis*. Biotechnology and Bioengineering, 2002]. Extract the contents of that file to a directory of your choice.

To begin the creation of a new project, you have to start the **New Project Wizard.** You can access it either through the *File Menu* or the *Toolbar.*

Project	Simulation	Optimization	Model Simplification	Plugins
	New Project \	Wizard		
1				

You have the option to create the new project from two different sources: flat files and SBML file.

1.1 – FROM FLAT FILES

<u>Step 1</u>

In the first step, the user must input a valid project name In the picture the name selected was "New Project"

•	New Proje	ct Wizard	
tep 1	_	_	
Project Name :	New Project		
Model Source	21	Flat Files	SBML O
		🐗 Back 📑	Next Cancel

<u>Step 2</u>

In the second step, the user must select three files, which were provided along with this tutorial:

• The first contains the reactions names and their flux limits – select *gomper.fluxes*;

• The second contains the stoichiometric matrix – select *gomper.matrix*;

• The third contains the metabolite names (optional) – select *gomper.compounds*

↓ Step 2 - Flat Fi		ject Wizard	×
Fluxes File			find
Stoichiometric Matrix	 Sparse) Full	find
Metabolites File			find
O Load GPR Information ?			find
		Back Next	🔀 Cancel

<u>Step 3</u>

In step 3, the first option concerns the indexing used in the stoichiometric matrix if the SPARSE option was selected. The user must select indexing starting at **zero**. For the remaining files, the user should select the **comma separator** for the Fluxes File and the **tab separator** for the matrix and metabolites file.

v	lew Project V	Wizard		×	
Step 3 - File Deli	miters				
Indexing starts at :	🗌 zero (0)	V one (1)			
Fluxes File Separator :	🗹 comma	🗌 tab	🗌 w.space	user defined	
Stoichiometric Matrix File Separator :	🗌 comma	🗹 tab	🗌 w.space	user defined	
Metabolites File Separator :	🗌 comma	🗹 tab	🗌 w.space	user defined	
		두 Back	Next	😢 Cancel	

<u>Step 4</u>

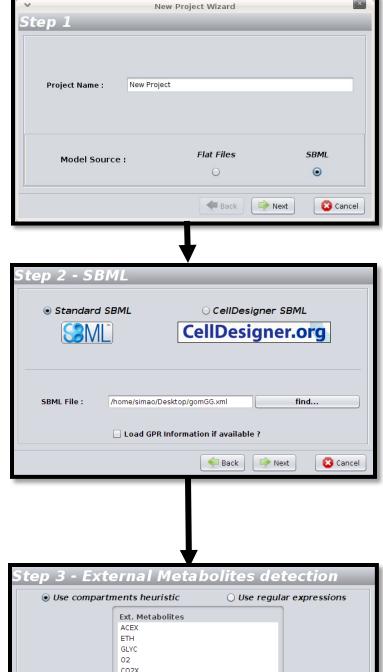
In the fourth step, OptFlux automatically tries to find the biomass growth associated flux, since this information is essential for both simulation and optimization procedures.

A heuristic method will automatically identify the reaction **"BIOMASSX"**.

lease select	t the biomass rea	ction :	
Selected	Biomass Reaction	BIOMASSX	
ID		Name	
BIOMASSX		BIOMASSX	Ă
EN01_EN02		EN01_EN02	
CAT2		CAT2	
RKI1		RK11	
EX_BIOMASS		EX_BIOMASS	
FADHX		FADHX	
SDH1 SDH2		SDH1 SDH2	7
Search:	BIOMASSX		case sensitive ?

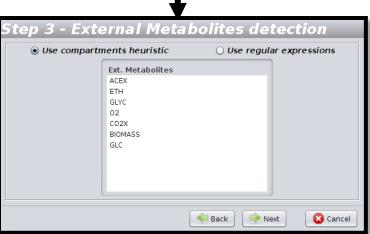
1.2 – FROM A SBML FILE

Step 1


In the first step, the user must input a valid project name.

In the picture the name selected was "New Project"

The user must select the SBML option in the bottom as the model source.



In the second step the user must select the file to load and the type of SBML therein contained. In this example, the user must select the file gomGG.xml provided in the attached zip file. The type of file to select can be Standard SBML or CellDesigner SBML (this example contains CD annotations for visualization).

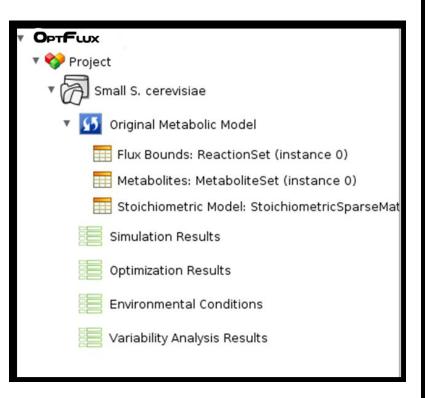
Step 3

The third step is relative to the extra-cellular environment. OptFlux will automatically try to find the extra-cellular compartment and the respective metabolites, using the compartments heuristics it will detects external metabolites based the definitions of the on compartments contained in the SBML file.

<u>Step 4</u>

In the fourth step, OptFlux automatically tries to find the biomass growth associated flux, since this information is essential for both simulation and optimization procedures.

A heuristic method will automatically identify the reaction **"BIOMASSX"**.


tep 4 - Biomas Please select the biomas	
Selected Biomass Reaction	n BIOMASSX
ID	Name
BIOMASSX	BIOMASSX
EN01 EN02	EN01 EN02
CAT2	CAT2
RKI1	RKII
EX_BIOMASS	EX_BIOMASS
FADHX	FADHX
SDH1 SDH2	SDH1 SDH2
Search: BIOMASSX	Case sensitive ?
	🔶 Back 📄 Finish 🛛 😮 Cancel

1.3 – PROJECT CREATED IN THE CLIPBOARD

After following either **step 1.1** or **step 1.2**, the user will now be presented with the scenario depicted in the following screenshot:

In the image, one can see the default structure of any OptFlux project. The central data type is named "Original Metabolic Model". Inside, one can access the flux limits information, metabolites information and also the stoichiometric coefficients in a humanreadable fashion.

At this point the user should click around a bit to get familiar with this structure and the information therein contained.

The viewers for the Reactions, Metabolites and the Stoichiometric Matrix are depicted in the screenshots below.

	searchc					
	-		Fluxes	Ē.		
	Reaction Name	Lower Bour	d Uppe	r Bound	Type	
	R_SDHcomplex	0.0	1000	0.0	INTERNAL	
	RZWF	0.0	1000		INTERNAL	
	R_FBA	-10000.0	1000		INTERNAL	
	R_LSC1LSC2	-10000.0	1000		INTERNAL	
	R_SUC	0.0	1000		EXTERNAL	
	R PDC	0.0	1000	0.0	INTERNAL	
arche						
		4	Metabolites			
Abbreviation		Complete Name	Compartment Name	Compartmen	t Location	
NADPHcyt		NADPHcyt	internal	INTERNAL	1 A	
RSP		RSP	internal	INTERNAL	2	
NADcyt		NADcyt	internal	INTERNAL		
G6P		G6P	internal	INTERNAL		
F16P		F16P	internal	INTERNAL		_
C02		C02	extra_celular	EXTERNAL		
57P		57P	internal	INTERNAL		
FAD		FAD	internal	INTERNAL		
PEP		PEP	internal	INTERNAL		
ACCOAmit		ACCOAmit	internal	INTERNAL		
NADHcyt		NADHcyt	internal	INTERNAL		
ACE		ACE	extra_celular	EXTERNAL		
SUC		SUC	extra_celular	EXTERNAL		
DHAP		DHAP	internal	INTERNAL		
SUCCOA		SUCCOA	internal	INTERNAL		
0.AA		OAA	internal	INTERNAL		
NADmit		NADmit	internal	INTERNAL		
P13G		P13G	internal	INTERNAL		
P3G		P3G	internal	INTERNAL		
ACCOAcyt		ACCOAcyt	internal	INTERNAL		
FADH2		FADH2	internal	INTERNAL		
PYR		PVR	internal	INTERNAL		
NADPHmit		NADPHmit	internal	INTERNAL		
P6G		P6G	internal	INTERNAL		
GA3P		GA3P	internal	INTERNAL		
ATP		ATP	internal	INTERNAL		
MAL		MAL	internal	INTERNAL		
G15L		G15L	internal	INTERNAL		
CI .		ICI	internal	INTERNAL		
ACA		ACA	internal	INTERNAL		
RUSP		RUSP	internal	INTERMAL		
NADPmit		NADPmit	internal	INTERNAL		
CI		a	internal	INTERNAL	1	
een.		ren	the second st	B.(TT.S.11)	12.3	

2ST STEP – PERFORMING SIMULATIONS

OptFlux allows the user to perform a simulation of the "wild-type" strain, i.e. of the model with no genetic modifications.

Access the "Wild Type" option either through the "Simulation" menu or right clicking on the model icon in the clipboard.

2.1 – PERFORMING A WILD-TYPE SIMULATION

<u>Step 1</u>

In the first step, the user must select the Project and the Metabolic Model to which the simulation will refer.

This step is necessary since OptFlux supports multiple-projects and each project can contain an Original Metabolic Model and a Simplified Metabolic Model.

In the context of this tutorial, leaving the default selection is just fine.

~	Wild Type	×
Select Pr	oject and Model	
Project:	Project	
Model:	Original Model	
Flux:	e Function	
vgrowth	Maximize	•
	Max vgrowth	
	ivironmental Conditions	-
	Ok Cancel	

<u>Step 2</u>

After completing all the previous steps, a new object named "Wild Type" is placed within the **Simulation Results** list. By left-clicking this object the user has access to detailed information about the performed simulation. The user can, for instance, see the values for all the fluxes the simulation method calculated and can even export the list of values to a text file.

Clipboard	Vvild Type 🗃	
Corfficux Project Project Metabolic Model Reactions Metabolites Stoichiometric Matrix Sto	Simulation Information Creation Date: Model Name: Method Name: Environmental Conditions: Objective Function: Net Conversions:	Thu Oct 08 17.49:31 BST 2009 Test Flux Balance Analysis Not Defined Max = 78.7966 7521.49 O2 + 7719.08 OLC> 938 395 ACEX + 1181.95 ETH + 9058 02 CO2X + 7879.66 BIOMASS

2.2 – PERFORMING A MUTANT SIMULATION – REACTION DELETIONS

<u>Step 1</u>

You can access the "Reaction Mutant" option under the "Simulation -> Mutants Simulation" menu or right clicking on the Metabolic Model icon on the clipboard.

Project	Simulation	Model Simplifica	tion	Optimization	Plugins
	Wild Type				
	Mutants S	Simulation		Gene Muta	ant
		ental Conditions.		Reaction N	/utant
Clipboa					
ТОрт	Flux Varia	ibility Analysis			
OPT					
	Flux Varia	bility Analysis	⊳		

<u>Step 2</u>

1. Reaction knockout list

Selecting in the Reaction list you can add/remove (using the arrows buttons) reactions to the knockout list (the list of reactions to be deleted, on the right).

2. Select Simulation Method

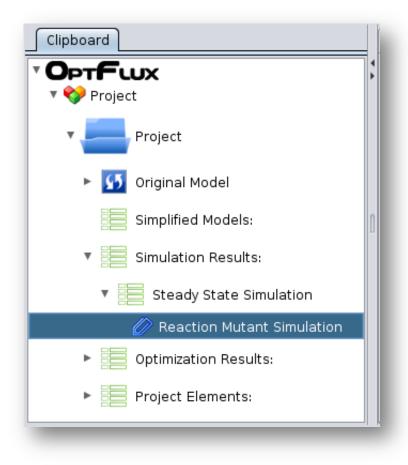
OptFlux can use several simulation methods for knockout simulations, namely: Flux-Balance Analysis, ROOM-LP, ROOM-MILP, MOMA

ROOM-LP stands for the Regulatory On-Off Minimization Method (ROOM), using a linear programming (LP) relaxation; ROOM-MILP is the original ROOM that uses a Mixed Integer LP (MILP) method; MOMA stands for the Minimization of Metabolic Adjustment method that uses quadratic programming.

3. Objective Function Configuration

Here you can select the reaction to optimize (biomass, by default), and you can also define if you will be maximizing or

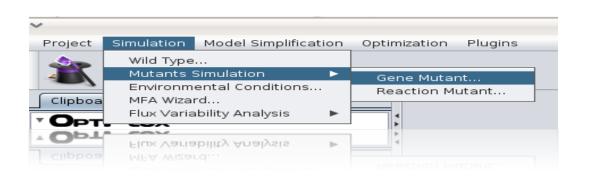
Select Pr	oject and Model	
Project:	Project	•
Model:	Metabolic Model	•
Reactio	n	Knockout
BIOMASSX GPD1_GPD	2	
CAT2 EN01_EN0	2	
RKI1		
PDC1_PDC:	5_PDC6	
C02EX		
FADHX		
SDH1_SDH RPE1	2	
TAL1		
MAE1	T	
Select Si	mulation Method	
Flux Balar	nce Analysis	•
Objective	Function	
Flux:		
BIOMASS	x	•
	Maxim	O Minim
	Max BIO	MASSX
Select En	vironmental Conditions	
📃 Use E	nvironmentalConditions:	· · · · · · · · · · · · · · · · · · ·
	Ok	Cancel


minimizing the flux.

4. Select Environmental Conditions

If you have created environmental conditions you can select them to be used as constrains in the simulation. These can be used to define the values of drain fluxes, i.e. the rates at which metabolites are consumed or produced.

<u>Step 3</u>


And that's all!! You can press OK and the results will be loaded into the clipboard..

2.3 – PERFORMING A MUTANT SIMULATION – GENE KNOCKOUT

<u>Step 1</u>

You can access the "Gene Mutant" option under the "Simulation -> Mutants Simulation" menu or right clicking on the Metabolic Model icon on the clipboard.

<u>Step 2</u>

In the Gene Mutant Simulation you can select the model/project to work, and set up your configuration.

1. Gene knockout list

Selecting in the Gene list you can add/remove (using the arrows buttons) genes to the knockout list (the list of genes to be knocked out, in the right). In the Inactive Reactions list you can see the reactions that will be turned off knocking out that set of genes.

2. Select Simulation Method

OptFlux can use several simulation methods for knockout simulations, namely:

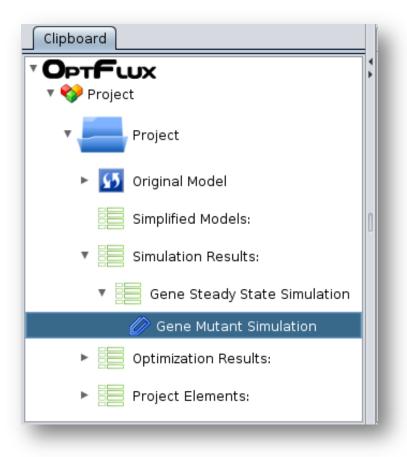
Flux-Balance Analysis, ROOM-LP, ROOM-MILP, MOMA

ROOM-LP stands for the Regulatory On-Off Minimization Method (ROOM), using a linear

	Project		
Model:	Metabolic Model		
Active	Genes	Knockout Genes	Inactive Reactions
YLR02 YMR12 YIL145 YAR07 YHR21 YML05 YLR43 YAR07 YKR00 YAL06	20C D C 3W C 6C 2W 5W 5W 2W 2W 5W	**	
	mulation Method		
Select En	vironmental Conditions:		
Select En	vironmental Conditio		
Select En	vironmental Condition nvironmentalConditions: Funtion Defenition		

programming (LP) relaxation; ROOM-MILP is the original ROOM that uses a Mixed Integer LP (MILP) method; MOMA stands for the Minimization of Metabolic Adjustment method that uses quadratic programming.

3. Objective Function Configuration

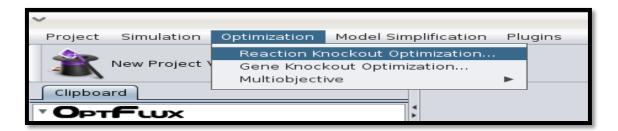

Here you can select the reaction to optimize (biomass, by default), and you can also define if you will be maximizing or minimizing that flux.

4. Select Environmental Conditions

If you have created <u>environmental conditions</u> you can select them to be used as constraints in the simulation. These can be used to define the values of drain fluxes, i.e. the rates at which metabolites are consumed or produced.

<u>Step 3</u>

And that's all !! You can press OK and the results will be loaded into the clipboard..



3ST STEP – PERFORMING OPTIMIZATION

3.1 – OPTIMIZE THE KNOCKOUT SET - REACTION DELECTIONS

<u>Step 1</u>

You can access the "Reaction Knockout Optimization" option under the "Optimization" menu.

<u>Step 2</u>

You can select the model/project to work, and set up your optimization configuration.

1.Select Project and Model

In the Project combo box select the project where you want to perform the optimization, in the Model combo box select the model within the project that you want to use (if you have performed model simplification, the simplified models will be easier to handle by the optimization algorithms).

2.Select Simulation Method

OptFlux can use several simulation methods, namely Flux-Balance Analysis, ROOM-LP, ROOM-MILP, MOMA. Check the <u>Simulation</u> How To's to find out more about these methods...

3.Select Environmental Conditions

If you have created <u>environmental conditions</u> you can select them to be used as constraints in the simulation.

4.Select Objective Function

OptFlux can use two types of objective function:

BPCY - Biomass-Product Coupled Yield, YIELD - Product Yield with Minimum Biomass. The first calculates the product of the biomass flux and the compound production flux; the second, returns the value of the target compound production flux divided by the substrate consumption flux, if the biomass is larger than a minimum value, defined by the user.

5.Objective Function Configuration

Here you can select the flux to be optimize (the compound you wish to produce), the flux that represents the biomass and the substrate that is in use.

Select Project and Model				
Project: Project				
Model: Metabolic Model	`			
Select Simulation Method	Objective Function Configuration			
Flux Balance Analysis	Biomass: BIOMASSX 🔹			
	Desired Flux: BIOMASSX			
Select Environmental Conditions	Substrate: EX_ACEX			
Use EnvironmentalConditions:				
	Select Optimization Algorithm			
Select Objective Function	Cellular Genetic Algorithm			
BPCY: Biomass-Product Coupled Yield				
	Optimization Basic Setup			
Essential Information	Maximum Number Of Solutions Evaluations: 50,000			
Use critical reactions	Estimated Time(Minutes): 83			
Add drain reactions	Maximum Number Of Knockouts 5			
Add drain reactions	□ Variable size genome			
Ok Cance	1			

6.Select Optimization Algorithm

OptFlux allows you to perform optimizations using one of the following algorithms: Cellular Genetic Algorithm, Evolutionary Algorithm, Simulated Annealing.

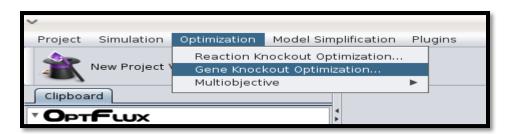
7.Optimization Basic Setup

Here you can configure the maximum number of solution evaluations (Simulations) and check the expected time to perform that number of evaluations.br> You can also set up the maximum number of knockouts and if the set of knockouts should be static or have a variable size.

8.Essential information

You can define if it is possible to knockout some special type of reactions like drains, transport and critical reactions (if you have loaded/created this information).

<u>Step 3</u>


Clipboard

And that's all, now you can press OK and check the results in the clipboard.

3.2 – OPTIMIZE THE KNOCKOUT SET – GENE KNOCKOUTS

<u>Step 1</u>

You can access the "Gene Knockout Optimization" option under the "Optimization" menu. To use this optimization you have to use with a model with GPR (gene-proteinreaction) information.

<u>Step 2</u>

You can select the model/project to work, and set up your optimization configuration.

1.Select Project and Model

In the Project combo box select the project where you want to perform the optimization, in the Model combo box select the model in the project that you want to use (if you have performed model simplification, the simplified models will be easier to handle by the optimization algorithms).

Select Project and Model				
Project: Project				
Model: Metabolic Model	_			
Select Simulation Method	Objective Function Configuration			
Flux Balance Analysis	Biomass: R_biomass_SC4_bal			
	Desired Flux: R_IMPC			
Select Environmental Conditions	Substrate: R_EX_gly_e_			
Use EnvironmentalConditions:	Select Optimization Algorithm			
	Cellular Genetic Algorithm			
Select Objective Function				
BPCY: Biomass-Product Coupled Yield	Optimization Basic Setup			
	Maximum Number Of Solutions Evaluations: 50,000			
Critical Genes	Estimated Time(Minutes):			
Use critical genes	Maximum Number Of Knockouts 5			
Ok Cancel				

2.Select Simulation Method

OptFlux can use several simulation methods, namely Flux-Balance Analysis, ROOM-LP, ROOM-MILP, MOMA.

Check the Simulation How To's to find out more about these methods...

3.Select Environmental Conditions

If you have created <u>environmental conditions</u> you can select them to be used as constraints in the simulationIf you have loaded/created environmental conditions you can select them to use as constraints in the simulation.

4.Select Objective Function

OptFlux can use two types of objective function:

BPCY - Biomass-Product Coupled Yield, YIELD - Product Yield with Minimum Biomass. The first calculates the product of the biomass flux and the compound production flux; the second, returns the value of the target compound production flux divided by the substrate consumption flux, if the biomass is larger than a minimum value, defined by the user

5.Objective Function Configuration

Here you can select the flux to be optimize (the compound you wish to produce), the flux that

represents the biomass and the substrate that is in use.

6.Select Optimization Algorithm

OptFlux allows you to perform optimizations using one of the following algorithms: Cellular Genetic Algorithm, Evolutionary Algorithm, Simulated Annealing

7.Optimization Basic Setup

Here you can configure the maximum number of solution evaluations (simulations) and check the expected time to perform that number of evaluations.

You can also set up the maximum number of knockouts and if the set of knockouts should be static or have a variable size.

8.Essential information

If you loaded/created some essential genes you can define if it is possible to knockout some critical genes.

<u>Step 3</u>

And that's all, now you can press OK and check the results in the clipboard.

4ST **STEP – INTERACTION WITH CELLDESIGNER**

3.1 – LOADING A CELLDESIGNER MODEL FOR VISUALIZATION

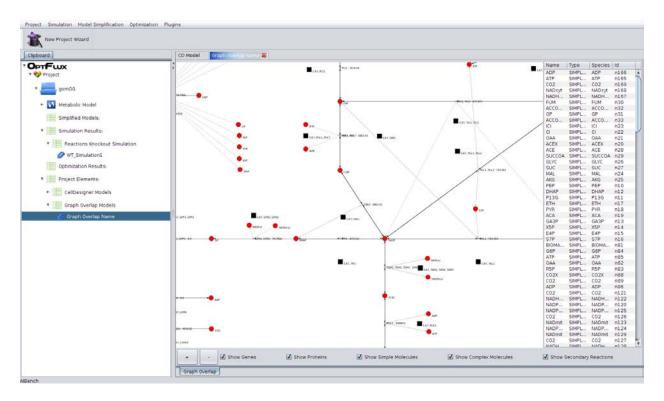
You can access the "Load CD model for visualization" option under the "Plugins -> Biovisualizer" menu.

Plugins	
Biovisualizer Þ	Load CD model for visualization
	Create Graph Overlap

In the project combo box select the project where you want to load the CD into, then choose the file and write the name for the CD visualization object in the clipboard.

Project:	Project	•
Model Name:	CD Model Name	
File:		find
	Ok Cancel	

3.2 – SIMULATION RESULT OVERLAP WITH CD MODEL


You can access the "Create a Graph Overlap" option under the "Plugins -> Biovisualizer" menu.

Plugins	
Biovisualizer Þ	Load CD model for visualization
	Create Graph Overlap

Select the Project to use, and the simulation result and model to use in the graph overlap.

Select Project, CD Model and Simulation		
Project:	Project	
Model:	CD Model Name	
Simulation:	WT_Simulation1	
Name: Graph Overlap Name		
Ok Cancel		

Then you can visualize the generated graph overlap model, present in the Project Elements section of the clipboard.

