From Optflux
Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 45: Line 45:
 
FBA is a constraint-based approach where feasible flux distributions are mainly defined by three types of constraints (Equation 1b): i) stoichiometric constraints, defining the mass balance equations over internal metabolites assuming steady-state (in the formulation vj corresponds to the flux of re- action j and Sij, stands for the stoichiometric coefficient of metabolite i in reaction j); ii) thermodynamic or capacity constraints, mainly defining re- action reversibility (vj,min for the lower limit and vj,max for the upper limit of the reaction vj); and iii) those imposed by the knockouts defined in the respective RKS. FBA uses linear programming to determine the optimal flux distributions using a specified objective function, maximizing a flux representing biomass production.
 
FBA is a constraint-based approach where feasible flux distributions are mainly defined by three types of constraints (Equation 1b): i) stoichiometric constraints, defining the mass balance equations over internal metabolites assuming steady-state (in the formulation vj corresponds to the flux of re- action j and Sij, stands for the stoichiometric coefficient of metabolite i in reaction j); ii) thermodynamic or capacity constraints, mainly defining re- action reversibility (vj,min for the lower limit and vj,max for the upper limit of the reaction vj); and iii) those imposed by the knockouts defined in the respective RKS. FBA uses linear programming to determine the optimal flux distributions using a specified objective function, maximizing a flux representing biomass production.
  
The optimization problem can be formulated as:
+
The formulation of the optimization problem can be formulated by:
  
 
[[File:formulation.png|400px]]
 
[[File:formulation.png|400px]]

Please note that all contributions to Optflux may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Optflux:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)